
Security Audit Report for NearOinDao

Date: Dec 4th, 2021

Version: 1.0

Contact: contact@blocksecteam.com

mailto:contact@blocksecteam.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 1

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 2

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 4
2.1 Software Security . 6

2.1.1 Two different attributes for the same usage . 6

2.1.2 Invalid distribution of the liquidation reward . 6

2.1.3 Block_timestamp is saved to the closed_time while opening the system 8

2.1.4 Contract state is not reverted when the cross function calls are failed 8

2.2 DeFi Security . 9

2.2.1 inject_reward lacks access control . 9

2.2.2 inject_sp_reward lacks access control . 10

2.2.3 burn_coin lacks access control . 10

2.2.4 deposit_token lacks access control . 10

2.2.5 Oracle lacks the check of time . 11

2.2.6 Inappropriate oracle poke interval time . 11

2.2.7 Missing Assert for Oin_Price . 11

2.2.8 Users may gain more mining reward with staking token 12

2.2.9 Users may pay less stable fee . 14

2.2.10 Unreasonable multi-signed request confirmation rate 14

2.2.11 Incorrect block number per year . 15

2.2.12 Incorrect calculation of the maximum usdo can mint 15

2.2.13 Incorrect handling of user’s stable fee . 16

2.2.14 Incorrect system ratio . 17

2.2.15 The number of reward coin can be larger than the upper bound 17

2.2.16 Users in different privileges use the same white list 18

2.2.17 burn_coin does not check the token type . 19

2.2.18 Reward coin’s total_reward can be modified by multi-Signature managers 19

2.3 Additional Recommendation . 20

2.3.1 Redundant assertion . 20

2.3.2 Repeated assertion for user’s liquidation ratio . 21

2.3.3 Redundant whitelist check . 21

2.3.4 Unused function . 22

i

2.3.5 Redundant Code . 22

2.3.6 The function name and the implementation is opposite 23

2.3.7 Redundant Code . 24

2.3.8 The calculation precision can be enhanced . 24

2.3.9 System may not record previously poked price . 25

2.3.10 Discontinuous distribution of collateral token in liquidation 25

2.3.11 Optimization of calculation precision is not necessary 26

2.3.12 The Risk of Centralized Design . 26

ii

Report Manifest

Item Description
Client Oinfinance
Target NearOinDao

Version History

Version Date Description
1.0 Dec 04, 2021 First Release

About BlockSec The BlockSec Team focuses on the security of the blockchain ecosystem, and col-

laborates with leading DeFi projects to secure their products. The team is founded by top-notch security

researchers and experienced experts from both academia and industry. They have published multiple

blockchain security papers in prestigious conferences, reported several zero-day attacks of DeFi applica-

tions, and released detailed analysis reports of high-impact security incidents. They can be reached at

Email, Twitter and Medium.

iii

https://www.blocksecteam.com
mailto:contact@blocksecteam.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

The target contracts contain a stable coin module. Around it, it also implements other modules,

including Staking and Farming. These modules create a positive feedback loop for the stabilization of the

stable coin, i.e., USDO.

Information Description
Type Smart Contract
Language Rust
Approach Semi-automatic and manual verification

The repositories that have been audited include NearOinDao 1

The auditing process is iterative. Specifically, we will further audit the commits that fix the founding

issues. If there are new issues, we will continue this process. Thus, there are multiple commit SHA values

referred in this report. The commit SHA values before and after the audit are shown in the following.

Before and during the audit

Project Commit SHA Commit Time

NearOinDao
Commit-1 45d687ecd6b0a0b7d0dc15364f60323650477891 2021.10.27
Commit-2 d578130518388b5e37d2c84908c571db02182bce 2021.11.01
Commit-3 cf19bdc5024a95ae415bb67f74129ce7fde6fc4b 2021.11.10
Commit-4 f9f8691c82857bfddb7e0e39d30003282805e4df 2021.11.27

After

Project Commit SHA
NearOinDao 3bd117606c753d3c2f66b6dcddd1ae18ea47a20a

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report do not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

1https://github.com/oinfinance/NearOinDao2.1

1

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the Rust language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

Reentrancy

DoS

Access control

Data handling and data Flow

Exception handling

Untrusted external call and control flow

Initialization consistency

Events operation

Error-prone randomness

Improper use of the proxy system

1.3.2 DeFi Security

Semantic consistency

Functionality consistency

Access control

Business logic

Token operation

Emergency mechanism

Oracle security

Whitelist and blacklist

Economic impact

Batch transfer

2

1.3.3 NFT Security

Duplicated item

Verification of the token receiver

Off-chain metadata security

1.3.4 Additional Recommendation

Gas optimization

Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 2 and Common Weakness Enumeration 3.

Accordingly, the severity measured in this report are classified into four categories: High, Medium, Low
and Undetermined.

2https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

3https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we find 22 potential issues in the smart contract. We also have 12 recommendation, as

follows:

High Risk: 19

Medium Risk: 2

Low Risk: 1

Recommendations: 12

The details are provided in the following sections.

ID Severity Description Category Status

1 High
Logic error while self.liquidation_line is

modified
Software Security Confirmed and fixed

2 High Function liquidation may not work Software Security Confirmed and fixed

3 High
Logic error while setting the time stamp for

opening the contract
Software Security Confirmed and fixed

4 High
Contract state is not reverted if the cross con-

tract transaction is failed
Software Security Confirmed and fixed

5 High Anyone can add the balance of reward DeFi Security Confirmed and fixed

6 High
Anyone can add the balance of stable pool re-

ward
DeFi Security Confirmed and fixed

7 High Anyone can burn the other users’ coins DeFi Security Confirmed and fixed

8 High Anyone can add the balance of their account DeFi Security Confirmed and fixed

9 High Oracle does not check the time interval DeFi Security Confirmed and fixed

10 High Oracle time interval is too long DeFi Security Confirmed and fixed

11 High No oracle for Oin price DeFi Security Confirmed and fixed

12 High Users can gain extra reward DeFi Security Confirmed and fixed

13 High Users can pay less stable fee DeFi Security Confirmed and fixed

14 Middle
The multi-signed request can be confirmed

with a relatively low confirmation ratio
DeFi Security Confirmed and fixed

15 Middle Block number per year is inaccurate DeFi Security Confirmed and fixed

16 High Available minted coins is not right DeFi Security Confirmed and fixed

17 High
Payment of stable fee can result in the loss of

user’s deposited tokens
DeFi Security Confirmed and fixed

18 High Incorrect staking ratio DeFi Security Confirmed and fixed

19 Low Reward coins can beyond the limitation DeFi Security Confirmed and fixed

20 High
Same whitelist for users in different priv-

eledges
DeFi Security Confirmed and fixed

21 High No check on the address of stable fee DeFi Security Confirmed and fixed

22 High
Reward coin’s total_reward can be modified by

multi-Signature managers
DeFi Security Confirmed and fixed

23 - Redundant assertion Recommendation Confirmed and fixed

4

24 - Repeated consideration of the liquidation line Recommendation Confirmed and fixed

25 - Redundant whitelist check Recommendation Confirmed and fixed

26 - Unused function Recommendation Confirmed and fixed

27 - Redundant Code Recommendation Confirmed and fixed

28 -
The function name and the implementation is

conflict
Recommendation Confirmed and fixed

29 - Redundant Code Recommendation Confirmed and fixed

30 - The calculation precision can be enhanced Recommendation Confirmed and fixed

31 - System may not record previously poked price Recommendation Confirmed and fixed

32 -
Discontinuous distribution of collateral token in

liquidation
Recommendation Confirmed and fixed

33 -
Optimization of calculation precision is not nec-

essary
Recommendation Confirmed and fixed

34 - The risk of centralized design Recommendation Acknowledged

5

2.1 Software Security

2.1.1 Two different attributes for the same usage

Status Confirmed and fixed

Description This issue is introduced in or before Commit-1. Two attributes (i.e., self.cost and self.liqui-

dation_line) represent the same contract state, which is the user’s liquidation line. They are used in

different functions of the contract (Listing 2.1 and Listing 2.2). However, self.liquidation_line can be

modified with the function set_liquidation_line while self.cost cannot be changed. In this case, if the

self.liquidation_line is modified, self.cost keeps the original value. This can influence the logic of

the function assert_user_ratio (Listing 2.1).

530 pub(crate) fn assert_user_ratio(&self) {
531 let user_ratio = self.internal_user_ratio(env::predecessor_account_id());
532 if user_ratio != 0 {
533 assert!(user_ratio >= self.cost, "User ratio less than standard.");
534 }
535 }

Listing 2.1: assert_user_ratio:lib.rs

585 // TODO liquidation
586 #[payable]
587 pub fn liquidation(&mut self, account: AccountId) {
588 assert!(self.is_liquidation_paused(), "{}", SYSTEM_PAUSE);
589 let ratio = self.internal_user_ratio(account.clone());
590 assert!(ratio > 0, "No current pledge");
591 assert!(ratio <= self.liquidation_line, "Not at the clearing line");
592 ...

Listing 2.2: internal_can_mint_amount:lib.rs

Impact The users’ liquidation line is not consistent in the different functions of the contract, which influ-

ences the logic of the whole contract.

Suggestion I We can unify the usages of these two attributes when calculating the user’s staking ratio

and comparing it to the system’s liquidation line.

2.1.2 Invalid distribution of the liquidation reward

Status Confirmed and fixed

Description This issue is introduced in or before Commit-4. The liquidation sender’s account and the

contract owner’s account may not be registered (Line 193 and 206 of List 2.3). In this case, when the

sender aims to conduct liquidation action, the transaction can not be executed successfully due to the

raised exception that accounts are not registered.

176 pub(crate) fn personal_liquidation_token(&mut self, send_id: AccountId, account_id: AccountId,
liquidation_gas: Balance, surplus_token: Balance, liquidation_fee: Balance) {

177 //self.owner_id
178 let coin_id = ST_NEAR.to_string();
179 let mut sys_reward_coin = self.internal_get_reward_coin(coin_id.clone());

6

180
181 let account_reward_key_o = self.get_staker_reward_key(send_id.clone(), coin_id.clone());
182 let user_reward_coin_o = self.internal_get_account_reward(send_id.clone(), coin_id.clone())

;
183
184 self.account_reward.insert(
185 &account_reward_key_o,
186 &UserReward {
187 index: user_reward_coin_o.index,
188 reward: user_reward_coin_o.reward.checked_add(liquidation_gas).expect(ERR_ADD),
189 },
190);
191
192 let account_reward_key_t = self.get_staker_reward_key(account_id.clone(), coin_id.clone());
193 let user_reward_coin_t = self.internal_get_account_reward(account_id.clone(), coin_id.clone

());
194
195 if surplus_token > 0 {
196 self.account_reward.insert(
197 &account_reward_key_t,
198 &UserReward {
199 index: user_reward_coin_t.index,
200 reward: user_reward_coin_t.reward.checked_add(surplus_token).expect(ERR_ADD),
201 },
202);
203 }
204
205 let account_reward_key_s = self.get_staker_reward_key(self.owner_id.clone(), coin_id.clone

());
206 let user_reward_coin_s = self.internal_get_account_reward(self.owner_id.clone(), coin_id.

clone());
207
208 self.account_reward.insert(
209 &account_reward_key_s,
210 &UserReward {
211 index: user_reward_coin_s.index,
212 reward: user_reward_coin_s.reward.checked_add(liquidation_fee).expect(ERR_ADD),
213 },
214);
215
216 sys_reward_coin.total_reward = sys_reward_coin
217 .total_reward
218 .checked_add(liquidation_gas).expect(ERR_ADD)
219 .checked_add(liquidation_fee).expect(ERR_ADD)
220 .checked_add(surplus_token).expect(ERR_ADD);
221
222 self.reward_coins.insert(&coin_id, &sys_reward_coin);
223 }
224
225}

Listing 2.3: personal_liquidation_token:reward.rs

7

Impact Function liquidation cannot be executed successfully due to the raised exception that the ac-

counts are not registered.

Suggestion I Assert the existence of the liquidation sender’s account and the contract owner’s account

at the beginning of function liquidation .

2.1.3 Block_timestamp is saved to the closed_time while opening the system

Status Confirmed and fixed

Description This issue is introduced in or before Commit-3. env::block_time_stamp() should not be

saved to the self.closed_time when invoking the function internal_open.

109 #[private]
110 pub fn internal_open(&mut self) {
111 self.closed_time = env::block_timestamp();
112 self.open_stake();
113 self.open_redeem();
114 self.open_claim_reward();
115 self.open_liquidation();
116 self.open_stable();
117 log!(
118 "{} open sys in {}",
119 env::predecessor_account_id(),
120 self.closed_time
121);
122 }

Listing 2.4: internal_open:esm.rs

Impact The opening time and closed time of the contract is completely wrong. Further updates that

depend on the time information can have logic error.

Suggestion I We suggest to create a new contract state called self.opening_time and assigned the

env::block_timestamp() to this value while invoking opening the contract.

2.1.4 Contract state is not reverted when the cross function calls are failed

Status Confirmed and fixed

Description This issue is introduced in or before Commit-3. The process of storage_deposit and ft_transfer

may fail during the cross contract function calls. We cannot guarantee that the transfer will always be per-

formed correctly. The callback function does not revert the contract state if the call is failed.

160 #[private]
161 pub fn storage_deposit_callback(&mut self) {
162 match env::promise_result(0) {
163 PromiseResult::NotReady => unreachable!(),
164 PromiseResult::Successful(_) => {
165 log!("Transfer success");
166 }
167 PromiseResult::Failed => {
168 log!("Transfer failed");
169 }

8

170 }
171 }

Listing 2.5: storage_deposit_callback:ft.rs

173 #[private]
174 pub fn liquidation_transfer_callback(&mut self) {
175 match env::promise_result(0) {
176 PromiseResult::NotReady => unreachable!(),
177 PromiseResult::Successful(_) => {
178 log!("Transfer success");
179 }
180 PromiseResult::Failed => {
181 log!("Transfer failed");
182 }
183 }
184 }

Listing 2.6: liquidation_transfer_callback:ft.rs

Impact Users may loss their assets when transactions failed as the callback function does not revert the

contract state.

Suggestion I We need to revert the contract state (when the transfer fails) in the callback function of the

cross contract function calls.

2.2 DeFi Security

2.2.1 inject_reward lacks access control

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Function inject_reward is public. Anyone

can invoke this function to add the balance of the reward in the contract.

33 pub fn inject_reward(&mut self, amount: U128, reward_coin: AccountId) {
34 // self.assert_owner();
35
36 if reward_coin == String::from("NEAR") {
37 assert!(
38 amount.0 == env::attached_deposit(),
39 "Amount not equal transfer_amount"
40);
41 }
42 ...
43 }

Listing 2.7: inject_reward:pool.rs

Impact Anyone can add arbitrary balance on the reward of the contract.

Suggestion I This function should be changed as a private one as it is called internally after receiving

the transferred reward.

9

2.2.2 inject_sp_reward lacks access control

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Function inject_sp_reward is public. Any-

one can invoke this function to add the balance of the stable pool reward in the contract.

1092 pub fn inject_sp_reward(&mut self, _amount: U128, sender_id: ValidAccountId) {
1093 self.reward_sp = self.reward_sp + u128::from(_amount);
1094
1095 log!(
1096 "{} add sp_reward {} cur amount{}",
1097 sender_id,
1098 u128::from(_amount),
1099 self.reward_sp
1100);
1101 }

Listing 2.8: inject_sp_reward:stablepool.rs

Impact Anyone can add arbitrary balance on the stable pool reward of the contract.

Suggestion I This function should be changed as a private one as it is called internally after receiving

the transferred stable pool reward.

2.2.3 burn_coin lacks access control

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Function burn_coin is public. Anyone can

invoke this function to burn anyone’s coin.

742 pub fn burn_coin(&mut self, amount: U128, fee: Balance, sender_id: ValidAccountId) -> Balance{
743 assert!(self.is_redeem_paused(), "{}", SYSTEM_PAUSE);
744 let sender_id = AccountId::from(sender_id);
745 self.assert_is_poked();
746 self.accured_token(sender_id.clone());
747 ...
748 }

Listing 2.9: burn_coin:lib.rs

Impact Anyone can use this function to burn anyone’s coin, resulting the loss of users’ assets.

Suggestion I This function should be changed as a private one as it is called internally after receiving

the transferred stable fee for burning coins.

2.2.4 deposit_token lacks access control

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Function deposit_token is public. Anyone

can invoke this function to add the balance of their account.

10

377 pub fn deposit_token(&mut self, amount: u128, _sender_id: ValidAccountId) {
378 self.assert_is_poked();
379 assert!(self.is_stake_paused(), "{}", SYSTEM_PAUSE);
380 let _amount = u128::from(amount);
381 let sender_id = AccountId::from(_sender_id);
382 . . .
383 }

Listing 2.10: deposit_token:lib.rs

Impact Attackers can invoke this function to add the balance of their account.

Suggestion I This function should be changed as a private one as it is called internally after receiving

the deposited tokens.

2.2.5 Oracle lacks the check of time

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. The function assert_is_poked in oracle.rs

only checks whether the value of the token price is zero. This does not makes sense as the token price is

keep changing.

55 pub(crate) fn assert_is_poked(&self) {
56 assert!(self.token_price != 0, "Oracle price isn’t poked.");
57 }

Listing 2.11: assert_is_poked:oracle.rs

Impact This issue affects price oracles. If the token price hasn’t been poked for a quiet long time, the

assert can still be passed and related transaction can be executed with an outdated price.

Suggestion I The contract should set a valid time period for the poked price.

2.2.6 Inappropriate oracle poke interval time

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. The constant POKE_INTERVAL_TIME defined

in types.rs means 1000 days now. And this time interval seems too long. A reasonable value is required.

69pub const POKE_INTERVAL_TIME: u64 = 86_400_000_000_000_000;

Listing 2.12: types.rs

Impact The time interval for poked price is inappropriate.

Suggestion I Reset the interval time for poked price with a reasonable value.

2.2.7 Missing Assert for Oin_Price

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. This function does not check whether the

value of the oin_token price is poked since user’s stable fee is calculated by the self.oin_price.

11

624 pub fn internal_user_stable(&self, account: AccountId) -> u128 {
625 let user_stable = self.account_stable.get(&account).expect("error");
626 let allot = self.get_account_allot(account.clone());
627 let coin = self
628 .account_coin
629 .get(&account)
630 .expect("error")
631 .checked_add(allot.0)
632 .expect(ERR_ADD);
633 let current_block_number = env::block_timestamp().checked_div(INIT_BLOCK_TIME).expect(

ERR_DIV);
634 user_stable
635 .saved_stable
636 .checked_add(
637 self.stable_fee_rate//16
638 .checked_div(BLOCK_PER_YEAR)
639 .expect(ERR_DIV)
640 .checked_mul(current_block_number as u128 - user_stable.block)
641 .expect(ERR_MUL)
642 .checked_mul(coin)//8
643 .expect(ERR_MUL)
644 .checked_div(self.oin_price)//8
645 .expect(ERR_DIV)
646 .checked_div(ONE_COIN)//8
647 .expect(ERR_DIV),
648)
649 .expect(ERR_ADD)
650 }

Listing 2.13: internal_user_stable:lib.rs

Impact The outdated OIN price may lead to price manipulation without checking the freshness of the

price poked by the oracle.

Suggestion I Add a self.assert_is_poked(); assertion before the calculation of user’s stabel fee.

2.2.8 Users may gain more mining reward with staking token

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. The claimed reward is not calculated accu-

rately. Function internal_get_saved_reward is called to calculate the user’s specific mining reward from

t0 to t1 with the following formula:

(reward_coin_ins.index− user_reward.index) ∗ (account.token+ account_allot.token)

Note that account_allot.token is the collateral reward added by other user’s liquidation. However,

liquidation may happen at any time from t0 to t1. For example, a user deposited 100 token on day0. On

day999, liquidation for the other user is triggered so that account_allot.token may increased to 1000.

When the user claims his reward on day1000, the 1000 token resulted from liquidation on day999

should only be counted for mining for one day. However, the contract actually calculate the mining reward

for the collateral reward from day0 to day1000.

12

61 // TODO[OK] Calculation of reward
62 pub(crate) fn internal_get_saved_reward(
63 &self,
64 staker: AccountId,
65 reward_coin: AccountId,
66) -> u128 {
67 let reward_coin_ins = self.internal_get_reward_coin(reward_coin.clone());
68 let (stake_token_num, _) = self.staker_debt_of(staker.clone());
69
70 if let Some(user_reward) = self
71 .account_reward
72 .get(&self.get_staker_reward_key(staker.clone(), reward_coin.clone()))
73 {
74 user_reward
75 .reward
76 .checked_add(
77 U256::from(
78 reward_coin_ins
79 .index
80 .checked_sub(user_reward.index)
81 .expect(ERR_SUB),
82)
83 .checked_mul(U256::from(stake_token_num))
84 .expect(ERR_MUL)
85 .checked_div(U256::from(reward_coin_ins.double_scale))
86 .expect(ERR_DIV)
87 .as_u128(),
88)
89 .expect(ERR_ADD)
90 } else {
91 0
92 }
93 }

Listing 2.14: internal_get_saved_reward:views.rs

27 pub fn staker_debt_of(&self, staker: AccountId) -> (u128, u128) {
28 if let Some(token) = self.account_token.get(&staker) {
29 let coin = self.account_coin.get(&staker).expect(ERR_NOT_REGISTER);
30 let allot = self.get_account_allot(staker.clone());
31 (token + allot.1, coin + allot.0)
32 } else {
33 (0, 0)
34 }
35 }

Listing 2.15: staker_debt_of:views.rs

Impact Users may gain extra rewards.

Suggestion I Remove the partition of newly allocated collateral when calculating mining reward. We can

make the mining reward only related to the amount of tokens deposited by the user.

13

2.2.9 Users may pay less stable fee

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Suppose one user mints 1000 USDOs on

day 0, and the stable_fee_rate at that time is 0.01oin/coin/day. If the user returns back the 1000 USDOs

on day100 and the stable fee rate does not change during the past 100 days, the stable fee he needs to

pay is 0.01 Oin/coin/day * 1000 Coin * 100 Day = 1000 Oin. However, if the owner set the stable_fee_rate

= 0.005 oin/coin/day on day99. In this time, the user only needs to pay 0.005 Oin/Coin/Day * 1000 Coin *

100 Day = 500 Oin. In fact, the accurate fee should be: (0.01 Oin/Coin/Day * 1000 Coin * 99 Day) + (0.005

Oin/Coin/Day * 1000 Coin * 1 Day) = 990 Oin + 5 Oin = 995 Oin.

In this case, the 495 Oin are not required to be paid by users.

33 // TODO [OK]
34 pub fn set_stable_fee_rate(&mut self, fee_rate: U128) {
35 self.assert_param_white();
36 self.update_stable_index();
37 assert!(fee_rate.0 <= INIT_MAX_STABLE_FEE_RATE, "Exceeding the maximum setting");
38 self.stable_fee_rate = fee_rate.into();
39 log!("Set stable fee rate {}", fee_rate.0);
40 }

Listing 2.16: set_stable_fee_rate:dparam.rs

57 pub fn update_stable_index(&mut self) {
58 }

Listing 2.17: update_stable_index:stablefee.rs

Impact Contract users may be charged less for stable fee.

Suggestion I Implement the stable fee’s system index like the calculation of reward_coin in this contract.

And make sure that the stable fee’s system index is updated whenever set_stable_fee_rate, liquidation

and update_stable_fee is called by contract users.

2.2.10 Unreasonable multi-signed request confirmation rate

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. The multi-signed request confirmation rate

is calculated by the number of multi-signature managers when the request was created. But the number

of multi-signature managers may change later. In this case, if the number of managers increases, the

request can be confirmed with a low confirmation ratio.

182 pub(crate) fn is_num_enough(&self, request_id: RequestId) -> bool {
183 let request = self.requests.get(&request_id).unwrap();
184 let confirmations = self.confirmations.get(&request_id).unwrap();
185
186 let num_confirmrations = request.num_confirm_ratio * (request.mul_white_num);
187 log!(
188 "confim num is {} num needed is {} ",
189 confirmations.len() as u32 * 100,
190 num_confirmrations

14

191);
192
193 (confirmations.len() as u64) * 100 >= num_confirmrations
194 }

Listing 2.18: is_num_enough:multisign.rs

72 pub fn add_request_only(&mut self, request: MultiSigRequest) -> RequestId {
73 self.assert_mul_white();
74 ...
75
76 let request_added = MultiSigRequestWithSigner {
77 signer_pk: env::signer_account_pk(),
78 added_timestamp: env::block_timestamp(),
79 confirmed_timestamp: 0,
80 request: request,
81 is_executed: false,
82 cool_down: self.request_cooldown,
83 mul_white_num: self.mul_white_num(),
84 num_confirm_ratio: self.num_confirm_ratio,
85 };
86
87 self.requests.insert(&self.request_nonce, &request_added);
88 ...
89 }

Listing 2.19: add_request_only:multisign.rs

Impact Multi-signed requests may be confirmed with a low confirmation rate as the contract only consider

the number of managers when the request is created.

Suggestion I Consider using the number of multi-signed users in the current contract state to calculate

the multi-signed request confirmation rate.

2.2.11 Incorrect block number per year

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Given that a block is generated every second

on the NEAR protocol’s mainnet, the generated block number per year should be 31536000 (365days)

rather than 31104000 (360days).

74 pub const BLOCK_PER_YEAR: u128 = 31104000;

Listing 2.20: types.rs

Impact Inaccurate constant for BLOCK_PER_YEAR will make the results of calculations using the constant

inconsistent with reality.

Suggestion I Change the BLOCK_PER_YEAR to be 31536000.

2.2.12 Incorrect calculation of the maximum usdo can mint

Status Confirmed and fixed.

15

Description This issue is introduced in or before Commit-1. allot_token.0 represents the allocated

debt. While calculating the available mint amount for USDO, the allocated debt should not be counted.

Otherwise, a user with very high debt can mint a huge number of USDOs.

585 pub(crate) fn internal_can_mint_amount(&self, account: AccountId) -> u128 {
586 self.assert_is_poked();
587 let token = self.account_token.get(&account).expect(ERR_NOT_REGISTER);
588 let guarantee = self.guarantee.get(&account).expect(ERR_NOT_REGISTER);
589 let allot_token = self.get_account_allot(account.clone());
590
591 let max_usdo = (U256::from(token)
592 .checked_add(U256::from(allot_token.1))
593 .expect(ERR_ADD))
594 .checked_mul(U256::from(self.token_price))
595 .expect(ERR_MUL)
596 .checked_div(U256::from(self.liquidation_line))
597 .expect(ERR_DIV)
598 .checked_div(U256::from(INIT_STABLE_INDEX))
599 .expect(ERR_DIV)
600 .checked_add(U256::from(allot_token.0))
601 .expect(ERR_ADD)
602 .checked_sub(U256::from(guarantee))
603 .unwrap_or(U256::from(0))
604 .as_u128();
605
606 ...
607 }

Listing 2.21: internal_can_mint_amount:lib.rs

Impact Users can mint additional USDOs when invoking the function mint_coin.

Suggestion I The allot_token.0, which represents the allocated debt, should not be counted as the

available minted USDOs.

2.2.13 Incorrect handling of user’s stable fee

Status Confirmed and fixed. (The related logic is removed now)

Description This issue is introduced in or before Commit-1. When users invoke the function burn_coin,

the stable fee is paid with ’OIN’ token rather than ’ST_NEAR’. However, the contract will reduce the balance

of the user’s staking token, which is not accurate.

742 pub(crate) fn burn_coin(&mut self, amount: U128, fee: Balance, sender_id: ValidAccountId) ->
Balance{

743 ...
744 assert!(usdo >= amount.into(), "Insufficient amount");
745 let token = self.account_token.get(&sender_id.clone()).expect(ERR_NOT_REGISTER);
746 self.internal_burn(sender_id.clone(), amount.into());
747
748 self.total_token = self.total_token.checked_sub(unpaid_fee.into()).expect(ERR_SUB);
749 self.account_token.insert(
750 &sender_id.clone(),
751 &token.checked_sub(unpaid_fee.into()).expect(ERR_SUB),

16

752);
753 ...
754
755 }

Listing 2.22: burn_coin:lib.rs

Impact Users’ staking token can be reduced due to the incorrect handling of the user’s stable fee.

Suggestion I Use the correct token for paying the stable fees.

2.2.14 Incorrect system ratio

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. If total_coin = 0, the ratio should be +∞ .

Setting it to 0 is incorrect.

432 pub(crate) fn internal_sys_ratio(&self) -> u128 {
433 self.assert_is_poked();
434 let token_usd = U256::from(self.total_token)
435 .checked_mul(U256::from(self.token_price))
436 .expect(ERR_MUL); /* 32 */
437 let total_coin = self.total_coin + self.total_guarantee;
438 if total_coin == 0 {
439 0
440 } else {
441 token_usd
442 .checked_div(U256::from(STAKE_RATIO_BASE))
443 .expect(ERR_DIV)
444 .checked_div(U256::from(total_coin))
445 .expect(ERR_DIV)
446 .as_u128()
447 }
448 }

Listing 2.23: internal_sys_ratio:lib.rs

Impact The system is likely to shut down due to the incorrect ratio.

Suggestion I Change the if condition total_coin = 0 to token_usd = 0.

2.2.15 The number of reward coin can be larger than the upper bound

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. When there are 20 reward coins now, the

assert at line 131 of Listing 2.24 can be passed. In this case, one more reward coin can be added and the

total number of rewards coins can be larger than the REWARD_UPPER_BOUND.

129 pub(crate) fn internal_add_reward_coin(&mut self, coin: RewardCoin) {
130 assert!(
131 self.reward_coins.len() <= REWARD_UPPER_BOUND,
132 "The currency slot has been used up, please modify other currency information as

appropriate",

17

133);
134
135 match self.reward_coins.get(&coin.token) {
136 Some(_) => {
137 env::panic(b"The current currency has been added, please add a new currency.");
138 }
139 None => {}
140 }
141 self.reward_coins.insert(&coin.token, &coin);
142
143 log!(
144 "{} add the RewardCoin=> {:?}",
145 env::predecessor_account_id(),
146 coin
147)
148 }

Listing 2.24: internal_add_reward_coin:pool.rs

Impact The available added number of reward coins is conflicted with the design of the system.

Suggestion I Change the assert into self.reward_coins.len() < REWARD_UPPER_BOUND.

2.2.16 Users in different privileges use the same white list

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Functions assert_param_white, assert_white,

assert_esm_white,assert_oracle_white are used for different privileges. However, they share the same

whitelist.

147 pub(crate) fn assert_esm_white(&self) {
148 self.assert_white()
149 }

Listing 2.25: assert_esm_white:esm.rs

117 pub(crate) fn assert_param_white(&self) {
118 self.assert_white();
119 }

Listing 2.26: assert_param_white:dparam.rs

50 pub(crate) fn assert_oracle_white(&self) {
51 self.assert_white();
52 }

Listing 2.27: assert_oracle_white:oracle.rs

Impact Users in different privilege share the same white list.

Suggestion I Implement different white lists for users with different privileges.

18

2.2.17 burn_coin does not check the token type

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Functions burn_coin does not check the

token type. In this case, attackers can transfer arbitrary tokens with specified amount for paying the stable

fee.

742 pub fn burn_coin(&mut self, amount: U128, fee: Balance, sender_id: ValidAccountId) -> Balance{
743 assert!(self.is_redeem_paused(), "{}", SYSTEM_PAUSE);
744 let sender_id = AccountId::from(sender_id);

Listing 2.28: assert_esm_white:esm.rs

Impact Users do not need to pay Oin token. Instead, they can pay the stable fee by transfer arbitrary

token with the required amount.

Suggestion I Check the address of the received token.

2.2.18 Reward coin’s total_reward can be modified by multi-Signature managers

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. Function inject_reward is decorated with

#[private]. Therefore, multi-signature managers can invoke this function through multi-signature requests

and add arbitrary amount on the total reward without injecting reward.

32 #[payable]
33 #[private]
34 pub fn inject_reward(&mut self, amount: U128, reward_coin: AccountId) {
35 // self.assert_owner();
36
37 if reward_coin == String::from("NEAR") {
38 assert!(
39 amount.0 == env::attached_deposit(),
40 "Amount not equal transfer_amount"
41);
42 }
43
44 if let Some(reward_coin_ins) = self.get_reward_coin(reward_coin.clone()) {
45 let mut reward_coin_ins = reward_coin_ins;
46 reward_coin_ins.total_reward = reward_coin_ins
47 .total_reward
48 .checked_add(amount.into())
49 .expect(ERR_SUB);
50 self.reward_coins.insert(&reward_coin, &reward_coin_ins);
51
52 if reward_coin == String::from("NEAR") {
53
54 } else {
55 log!("Transfer is not required for post-processing");
56 }
57 } else {
58 env::panic(b"No the reward coin.");
59 }

19

60 }

Listing 2.29: inject_reward:pool.rs

Suggestion I Remove the decorator #[private], and change the visibility of the function inject_reward

to be private.

2.3 Additional Recommendation

2.3.1 Redundant assertion

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-2. Function inject_reward should only be

called by ft_on_transfer internally. The address of the reward coin is checked in ft_on_transfer. In this

case, we do not need to check the name of reward coin at the beginning of the function inject_reward.

37 #[payable]
38 #[private]
39 pub fn inject_reward(&mut self, amount: U128, reward_coin: AccountId) {
40 // self.assert_owner();
41
42 if reward_coin == String::from("NEAR") {
43 assert!(
44 amount.0 == env::attached_deposit(),
45 "Amount not equal transfer_amount"
46);
47 }
48
49 ...
50 }

Listing 2.30: inject_reward:pool.rs

900
901 pub fn ft_on_transfer(
902 &mut self,
903 sender_id: ValidAccountId,
904 amount: U128,
905 msg: String, /* token */
906) -> PromiseOrValue<U128> {
907 ...
908 FtOnTransferArgs::InjectReward => {
909 assert_eq!(sender_id.to_string(), self.owner_id, "ERR_NOT_ALLOWED");
910
911 assert!(
912 self.reward_coins.get(&token_account_id).is_some(),
913 "Invalid reward coin"
914);
915
916 self.inject_reward(amount, token_account_id);
917 amount_return = 0;
918 }

20

919 ...
920 }

Listing 2.31: ft_on_transfer:lib.rs

Suggestion I Remove check on the name of reward coin in inject_reward.

2.3.2 Repeated assertion for user’s liquidation ratio

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. The liquidation line is already taken into

consideration in function internal_avaliable_token, so there is no need to check whether the user_ratio’s

reaches the liquidation line later.

544 #[payable]
545 pub fn withdraw_token(&mut self, amount: U128) {
546 assert!(self.is_stake_paused(), "{}", SYSTEM_PAUSE);
547 let mut amount = amount.0;
548
549 let token = self.internal_avaliable_token(env::predecessor_account_id());
550 let debt = self.get_dept(env::predecessor_account_id());
551
552 log!("token :{} amount: {}", token, amount);
553 assert!(token >= amount, "Insufficient avaliable token.");
554 if debt.0 - debt.2 == 0 {
555 if token - amount < self._min_amount_token() {
556 amount = token;
557 }
558 } else {
559 self.assert_user_ratio();
560 if token - amount < self._min_amount_token() {
561 env::panic(b"Please return all coins first");
562 }
563 }

Listing 2.32: withdraw_token:lib.rs

Suggestion I Remove the redundant assertion in Line 559 of Listing 2.32.

2.3.3 Redundant whitelist check

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. Function set_reward_speed invoke the

function assert_param_white to check the privilege. Meanwhile, the internal_set_reward_speed, which

is called by set_reward_speed, invoke the assert_white again. assert_white has the same whitelist as

the assert_param_white.

154 pub fn set_reward_speed(&mut self, reward_coin: AccountId, speed: U128) {
155 self.assert_param_white();
156 self.internal_set_reward_speed(reward_coin, speed);
157 }

21

Listing 2.33: set_reward_speed:dparam.rs

165 pub(crate) fn internal_set_reward_speed(&mut self, reward_coin: AccountId, speed: U128) {
166 self.assert_white();
167 self.update_index();
168 . . .
169 }

Listing 2.34: internal_set_reward_speed:pool.rs

Suggestion I Remove assert_white inside the function internal_set_reward_speed.

2.3.4 Unused function

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. Function on_inject_reward is not used by

any other functions. Thus, it can be removed.

146 #[private]
147 pub fn on_inject_reward(&mut self, reward_coin: AccountId, amount: U128) {
148 match env::promise_result(0) {
149 PromiseResult::NotReady => unreachable!(),
150 PromiseResult::Successful(_) => {}
151 PromiseResult::Failed => {
152 let mut reward_coin_ins = self.internal_get_reward_coin(reward_coin.clone());
153 reward_coin_ins.total_reward = reward_coin_ins
154 .total_reward
155 .checked_sub(amount.into())
156 .expect(ERR_ADD);
157 self.reward_coins.insert(&reward_coin, &reward_coin_ins);
158 }
159 };
160 }

Listing 2.35: on_inject_reward:pool.rs

Suggestion I Remove the function on_inject_reward.

2.3.5 Redundant Code

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. Function account_allot.get() is used to

get the allocated reward and debt. Inside the function set_account_allot, the invocation of this function

is not required.

36 pub(crate) fn set_account_allot(&mut self,account_id: AccountId){
37 //Update [personally assigned debt, personally assigned pledge] to system value
38 let (allot_debt, allot_token) = self.get_account_allot(account_id.clone());
39 let token = self.account_token.get(&account_id).expect(ERR_NOT_REGISTER);
40 let coin = self.account_coin.get(&account_id).expect(ERR_NOT_REGISTER);
41

22

42 self.account_allot.get(&account_id);
43
44 self.account_allot.insert(
45 &account_id,
46 &AccountAllot{
47 account_allot_debt: self.sys_allot_debt,
48 account_allot_token: self.sys_allot_token,
49 }
50);
51 self.account_coin.insert(&account_id, &coin.checked_add(allot_debt).expect(ERR_ADD));
52 self.account_token.insert(&account_id, &token.checked_add(allot_token).expect(ERR_ADD));
53 }

Listing 2.36: set_account_allot:allot.rs

Suggestion I Remove the invocation account_allot.get() at line 42.

2.3.6 The function name and the implementation is opposite

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. Function is_stake_paused, is_redeem_paused,

is_claim_reward_paused,is_liquidation_paused,is_stable_paused are defined to represent whether the

function is paused or not. However, when the specific attribute is live, it returns True.

72 // TODO [OK]
73 pub(crate) fn is_stake_paused(&self) -> bool {
74 self.stake_live == 1
75 }
76
77 // TODO [OK]
78 pub(crate) fn is_redeem_paused(&self) -> bool {
79 self.redeem_live == 1
80 }
81
82 // TODO [OK]
83 pub(crate) fn is_claim_reward_paused(&self) -> bool {
84 self.claim_live == 1
85 }
86
87 // TODO [OK]
88 pub(crate) fn is_liquidation_paused(&self) -> bool {
89 self.liquidation_live == 1
90 }
91
92 // TODO [OK]
93 pub(crate) fn is_stable_paused(&self) -> bool {
94 self.stable_live == 1
95 }

Listing 2.37: is_{stake|redeem|claim_reward|liquidation|stable}_paused:esm.rs

Suggestion I Change the function name of is_{stake|redeem|claim_reward|liquidation|stable}_paused

into is_{stake|redeem|claim_reward|liquidation|stable}_live

23

2.3.7 Redundant Code

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. Function update_stable_fee is used to

update the required stable fees. Stable fees is not related to the staked tokens. Thus, changing the

balance of token for users does not need to update the stable fees.

331 pub(crate) fn deposit_token(&mut self, _amount: u128, _sender_id: ValidAccountId) {
332 self.assert_is_poked();
333 assert!(self.is_stake_paused(), "{}", SYSTEM_PAUSE);
334 let sender_id = AccountId::from(_sender_id);
335 assert!(_amount > 0, "Deposit token amount must greater than zero.");
336
337 if let Some(0) = self.guarantee.get(&sender_id) {
338 assert!(
339 _amount >= self._min_amount_token(),
340 "Deposit token amount must greater the minimum deposit token."
341);
342 }
343 self.update_personal_token(sender_id.clone());
344 self.update_stable_fee(sender_id.clone());
345 self.set_account_allot(sender_id.clone());
346 . . .
347 }

Listing 2.38: deposit_token:lib.rs

Suggestion I Remove the invocation update_stable_fee at line 344.

2.3.8 The calculation precision can be enhanced

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-3. Function internal_user_stable aims to

calculate the stable fee. The calculation precision can be enhanced by conducting multiplication before

division.

15 pub(crate) fn update_stable_fee(&mut self, account: AccountId) {
16 if let Some(mut user_stable) = self.account_stable.get(&account) {
17 let allot = self.get_account_allot(account.clone());
18 let debt = allot.0;
19 let current_block_number = self.to_nano(env::block_timestamp()) as u128;
20
21 let coin = self.account_coin.get(&account).expect(ERR_NOT_REGISTER).checked_add(debt).

expect(ERR_ADD);
22 let delta_block = current_block_number.checked_sub(user_stable.block).expect(ERR_SUB);
23 if delta_block > 0 && coin > 0 {
24 let fee = self.stable_fee_rate//16
25 .checked_mul(delta_block).expect(ERR_MUL)
26 .checked_mul(coin).expect(ERR_MUL)//8
27 .checked_div(BLOCK_PER_YEAR).expect(ERR_DIV)
28 .checked_div(self.oin_price).expect(ERR_DIV)//8
29 .checked_div(ONE_COIN).expect(ERR_DIV);//8

24

30
31 self.saved_stable = self.saved_stable
32 .checked_add(fee).expect(ERR_ADD);
33
34 user_stable.saved_stable = user_stable.saved_stable
35 .checked_add(fee).expect(ERR_ADD);
36 }
37
38 user_stable.block = current_block_number;
39 self.account_stable.insert(&account, &user_stable);
40 log!("Current stabilization fee: {:?}",self.account_stable.get(&account));
41 } else {
42 env::panic(b"Not register")
43 }
44 }

Listing 2.39: update_stable_fee:stablefee.rs

Suggestion I Conduct the multiplication before division for the calculation from line 25 to line 30.

2.3.9 System may not record previously poked price

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-1. The function is not implemented correctly.

System may not record poked price as the number of total tokens deposited in the contract is greater than

0 in most cases.

26pub fn poke(&mut self, token_price: U128) {
27 ...
28 if self.total_token > 0 {
29 if self.internal_sys_ratio() <= INIT_MIN_RATIO_LINE {
30 self.internal_shutdown();
31 }
32 }else {
33 log!(
34 "{} poke price {} successfully.",
35 env::predecessor_account_id(),
36 token_price.0
37);
38 }
39 }

Listing 2.40: poke:oracle.rs

Suggestion I Recording the behavior of poking token price should not be influenced by the number of

deposited tokens in the contract.

2.3.10 Discontinuous distribution of collateral token in liquidation

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-4. When the user’s staking ratio is larger or

equal than 108.5%, users have to pay the liquidation_fee, which owns 2% of the allot_debt. However, if

25

the user’s staking ratio is less than 108.5%, he/she does not need to pay the liquidation fee. This result in

the fact that user with larger staking ratio may allot less staking token to the pool after liquidation.

820 #[payable]
821 pub fn liquidation(&mut self, account: AccountId) {
822 ...
823 if ratio >= INIT_NO_LIQUIDATION_FEE_RATE {
824 liquidation_fee = _allot_debt
825 .checked_mul(self.liquidation_fee_ratio).expect(ERR_MUL)
826 .checked_mul(STAKE_RATIO_BASE).expect(ERR_MUL)//16
827 .checked_div(self.token_price).expect(ERR_DIV);
828 }else{
829 allot_ratio = ratio
830 .checked_sub(self.gas_compensation_ratio).expect(ERR_SUB)
831 .checked_add(1).expect(ERR_ADD);
832 }
833 ...

Listing 2.41: liquidation:lib.rs

Suggestion I For user whose staking ratio is between 108.5% to 110.5%, the liquidation fee is suggested

to be (staking ratio - 108.5%).

2.3.11 Optimization of calculation precision is not necessary

Status Confirmed and fixed.

Description This issue is introduced in or before Commit-4. Adding 1 in line 832 in listing 2.42 cannot

increase the calculation precision as self.gas_compensation_ratio is rather large.

820 #[payable]
821 pub fn liquidation(&mut self, account: AccountId) {
822 ...
823 if ratio >= INIT_NO_LIQUIDATION_FEE_RATE {
824 liquidation_fee = _allot_debt
825 .checked_mul(self.liquidation_fee_ratio).expect(ERR_MUL)
826 .checked_mul(STAKE_RATIO_BASE).expect(ERR_MUL)//16
827 .checked_div(self.token_price).expect(ERR_DIV);
828 }else{
829 allot_ratio = ratio
830 .checked_sub(self.gas_compensation_ratio).expect(ERR_SUB)
831 .checked_add(1).expect(ERR_ADD);
832 }
833 ...

Listing 2.42: liquidation:lib.rs

Suggestion I Remove the added "1" in line 831 of listing 2.42.

2.3.12 The Risk of Centralized Design

Status Acknowledged

26

Description Description The project has a highly centralized design. The contract owner has very
high privilege that can add/delete the multi-signature managers and can withdraw the liquidation
fee and reward, etc. Such mechanism is absolutely centralized, which has a complete control power over

all tokens. We highly suggest that the project owner should enforce security mechanisms to protect the

private keys of the contract owner to manage the contracts.

27

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Software Security
	2.1.1 Two different attributes for the same usage
	2.1.2 Invalid distribution of the liquidation reward
	2.1.3 Block_timestamp is saved to the closed_time while opening the system
	2.1.4 Contract state is not reverted when the cross function calls are failed

	2.2 DeFi Security
	2.2.1 inject_reward lacks access control
	2.2.2 inject_sp_reward lacks access control
	2.2.3 burn_coin lacks access control
	2.2.4 deposit_token lacks access control
	2.2.5 Oracle lacks the check of time
	2.2.6 Inappropriate oracle poke interval time
	2.2.7 Missing Assert for Oin_Price
	2.2.8 Users may gain more mining reward with staking token
	2.2.9 Users may pay less stable fee
	2.2.10 Unreasonable multi-signed request confirmation rate
	2.2.11 Incorrect block number per year
	2.2.12 Incorrect calculation of the maximum usdo can mint
	2.2.13 Incorrect handling of user's stable fee
	2.2.14 Incorrect system ratio
	2.2.15 The number of reward coin can be larger than the upper bound
	2.2.16 Users in different privileges use the same white list
	2.2.17 burn_coin does not check the token type
	2.2.18 Reward coin's total_reward can be modified by multi-Signature managers

	2.3 Additional Recommendation
	2.3.1 Redundant assertion
	2.3.2 Repeated assertion for user's liquidation ratio
	2.3.3 Redundant whitelist check
	2.3.4 Unused function
	2.3.5 Redundant Code
	2.3.6 The function name and the implementation is opposite
	2.3.7 Redundant Code
	2.3.8 The calculation precision can be enhanced
	2.3.9 System may not record previously poked price
	2.3.10 Discontinuous distribution of collateral token in liquidation
	2.3.11 Optimization of calculation precision is not necessary
	2.3.12 The Risk of Centralized Design

